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WCI

Overview: Decoupled lons in HANES WEAPOKS

AND COMPLEX
INTEGRATION

When a finite pulse of plasma expands into a magnetized background plasma,
MHD predicts the pulse expel background plasma and its B-field—i.e. cause a
magnetic “bubble”.

The expanding plasma is confined within the bubble, later to escape down
the B-field lines. MHD suggests that the debris energy goes to expelling
the B-field from the bubble volume and kinetic energy of the displaced background.

For HANES, this is far from the complete story.

For many realistic HANE regimes, the long mean-free-path for collisions necessitates
a Kinetic lon Simulation Model (KISM). The most obvious effect is that the debris
plasma can decouple and slip through the background plasma.

The implications are:
1) the magnetic bubble is not as large as expected and
2) the debris is no longer confined within the magnetic bubble.
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Traditional MHD Modeling of HANES WCI

] ] WEAPONS
Misses Important Physics SRS

Consider a HANE-relevant debris pulse into the ambient ionospheric density
at 400 km altitude. For typical densities (here 3e5 O*' ions/cm3), a STARFISH
relevant explosion produces magnetic bubbles such as these
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Introducing More Realism reveals important WCI
. WEAPONS
non-MHD behavior
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Time=3
Parameter changes towards more realistic physics lead to interesting
changes in coupling of the debris to the ionosphere.
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lon debris decoupling is very sensitive to the charge states
and drives a requirement for improved atomic physics
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This Physics is easier to see in 1-D WCI

WEAPONS
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Initial debris configuration: z </
v,=2e8 cm/sec v,=0. ,
homogeneous , 20 km R-Z Plane

radius debris “puff”

v
t=0 O\ =
: . TE+DE | -
radius radius ¥ A=230
.05 sec
1E+D% |
= o
= A=230 1E+D2 |
1E402 | =0
= 0 2EHE T 3= T — ety
-1E+08 |
=
ZEHDE TEDT ; TET TET TEHIE [ ﬁ=23ﬂ
1408 A=230 of -
0 jem
= . 1EHE
g gz =

2408 -2EHIE |
-3E40E TE+D7 N TEDT TET ) ) . . . . . . . | . . . , |

-3EHIE TE+O7 - TEOT TEHO7

(5

LLNL HANE Mar 2011



Here is the same physics with added background W]
for a typical coupled & decoupled case
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A run with U slipping through O reveals WCI

WEAPONS

what’s important for decoupling R COMPLEX

U*1 slips through
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Essential piece is positive Eg —
due to debris outflow in quasi-

ExB drift at the Alfvén speed.




e — WCI
We developed a simple criterion for when Kinetic

WEAPONS
lon Models are essential for modeling HANE RRSSARTIEN
Debris “decouples” Higher debris charge
Time=-3 depending on states couple more
background electron density strongly
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lon debris decoupling is very sensitive to the charge states
and drives a requirement for improved atomic physics
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Consider the fields generated by the debris WCI

. . . . = WEAPONS
in this quasi-neutral, collisionless plasma Ao COMPLEX
Start with the electron momentum equation mn,Djii, =en,E+VP.+J,xB/c
In the zero electron mass limit, we solve for E E= VE _J.xB
en, enc

Assuming quasi-neutrality and using the Darwin limit of Ampere’s law,
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The debris generates electric fields as it passes through the background,

however not in the “obvious” directions. UL.
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Consider how a background ion responds WCI

) ) WEAPONS
to these fields as the debris passes AND COMPLEX
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The background will be left behind if WCI

. . . WEAPONS
it acquires too little “speed” a0 COMPLEX

To coupling, the background ions must acquire
enough velocity to remain in front of the debris

The secret of the decoupling lies in the
1) magnitude of £,
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Another way to look at this... WCI
WEAPONS

Remember the uﬁﬂ assumption NEGRATION

Look at the ratio £,
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WCI

anB>(§-1j o | is not quite the whole story WEAPONS
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Simple formula would suggest that the product Z,n, is all that matters...

However...
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Higher charge state Zg (smaller

WCI
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Enhanced coupling leads to another WCI
threshold that plays in debris coupling NEArons

INTEGRATION

T
In addition to the electron density threshold 2yl > (E_IJZDnD )

DEcoupling requires the gyro-radius to be BIGGER than the pulse length or
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that shows the observed additional dependence on background charge state.

L.
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Summary: lon Decoupling in WCI

Magnetized Plasma Explosions WEAPONS

INTEGRATION

Super Alfvénic debris HANE expansions into ionosphere have been shown
computationally to decouple from the ionosphere.

Simple, linear arguments have been developed that suggest threshold conditions
required for decoupling (or non-fluid-like behavior) to occur.

T Zn,, <1 cmy,  Zpnpu;, ~Z,5
2 (Zyn, +Zyny) 2eB. (Z,n, +Z,n,) PEE

This decoupling has interesting implications for both EMP and belt pumping.

Reconsideration of the STARFISH event suggest that these threshold conditions are
relevant, and strongly dependent on the initial parameters of the HANE event.

Take away concepts:
Even in linear analysis, finite gyro-radii effect matter.

Threshold seem to apply species by species
(the species in question is the “debris”, all others are part of the “background”)

MHD/Fluid codes will not see these effects

L
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